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Time Series Analysis

• We discuss techniques for modeling univariate time series.

• These are used, for example, for short–term prediction of asset prices or
to test market efficiency.

• We focus on linear AutoRegressive Moving Average (ARMA) models,
which is the most commonly used class of models.

• Financial data typically exhibit a more complex structure than can be
captured by these processes, but they serve as a useful starting point.

• The concepts used to study these models are also employed in other
contexts.
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Time Series Analysis

• A time series is a stochastic sequence of random variables,

{Y }∞t=−∞ = {. . . , Y−2, Y−1, Y0, Y1, Y2, . . .}.

• The index t of Yt refers to time.

• We will just write “time series Yt” rather than {Yt}t∈Z.

• In practice, we only observe a finite segment, e.g.,

{Y1, . . . , YT}, (1)

of a single realization of a time series.
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• Therefore, in order to have any chance of understanding the system,
and predicting the future, we need to assume some a priori structure:
stationarity.

• Stationarity may be viewed as a kind of “statistical equilibrium”.1

1Box, Jenkins, and Reinsel (2008), Time Series Analysis. Forecasting and Control, 4e, John Wiley &
Sons, p. 24.
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Strict Stationarity
• The joint distribution function (cdf) of a finite set of random variables
{Yt1, Yt2, · · · , Ytn} from the collection {Yt}t∈Z is defined by

FYt1
,Yt2

,...,Ytn
(y1, y2, . . . , yn) (2)

= Pr(Yt1 ≤ y1, Yt2 ≤ y2, . . . , Ytn ≤ yn). (3)

The system of finite–dimensional cdfs uniquely defines a stochastic
process.

• A time series is called strictly stationary if

FYt1
,Yt2

,...,Ytn
(y1, y2, . . . , yn) (4)

= FYt1+h,Yt2+h,...,Ytn+h
(y1, y2, . . . , yn),

where the equality must hold for all possible finite sets of indices
t1, t2, . . . , tn and h ∈ Z and all (y1, y2, . . . , yn) in the range of the
random variable Yt.

• Note that the indices t1, t2, . . . , tn are not necessarily consecutive.
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Strict Stationarity

• For example, take n = 1.

• Then we simply have

FYs(y) = FYt(y) for all s and t (and all y).

• This means that the process has the same marginal distribution at each
point of time, and we can hope to learn about the properties of the
distribution of Yt by treating the observed segment as a (although not
independent) sample from the same distribution.
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Strict Stationarity

• Now take n = 2.

• Then we have

FYs,Yt(y1, y2) = FYs+h,Yt+h
(y1, y2) for all s and t and h.

• This means that the dependence structure between two variables of a
time series (as embodied in their joint distribution) depends only on their
“distance in time”, i.e., |s− t|.

• It does not depend on h. That is, the dependence between the return
today and the return tomorrow is the same as that between the return
in two weeks and the return in two weeks plus one day; here |s− t| = 1
and h = 10 (ten trading days).

• This is useful since in general we are doing time series analysis because
we are interested in conditional distributions, i.e., the distributions of
future returns given the return path up to now.

6



Strict Stationarity

• More generally, strict stationarity thus implies that all the multivariate
distributions for subsets of n variables in (4) must agree with their
counterparts in the shifted set for all h.

• That is, their joint distribution depends only on the distance between the
elements t1, t2, . . . , tn ∈ Z, and not on their actual values.
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Weak Stationarity

• A somewhat different concept of stationarity is weak stationarity, or
covariance stationarity, or wide–sense stationarity, or second–order
stationarity.

• This imposes conditions on the first two moments of the series.

• That is, time series Yt is weakly stationary if

(1) the mean function is constant and finite, i.e.,

µt := E(Yt) = µ < ∞ for all t, (5)

and
(2) the autocovariance function,

γ(s, t) = Cov(Ys, Yt) = E(YsYt)− E(Ys)E(Yt), (6)

exists and depends only on the distance in time, τ = |s− t|, between
the two random variables.
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• Condition (2) for s− t = 0 requires that the second moment (and hence
the variance) is finite and does not depend on time, i.e.,

E(Y 2
t ) =: γ(0) < ∞ for all t. (7)

• If (7) holds, we also have (Cauchy–Schwarz inequality)

|E(YtYt−τ)| ≤
√

E(Y 2
t )E(Y 2

t−τ) = E(Y 2
t ) < ∞.

9



Weak Stationarity

• For a weakly stationary process, we can thus define the autocovariance
function at lag τ ∈ Z, γ(τ),

γ(τ) := Cov(Yt, Yt−τ) = E(YtYt−τ)− E(Yt)E(Yt−τ)

= E(YtYt−τ)− E2(Yt),

and the autocorrelation function

ρ(τ) :=
Cov(Yt, Yt−τ)

Var(Yt)
=

E(YtYt−τ)− E2(Yt)
E(Y 2

t )− E2(Yt)
=

γ(τ)
γ(0)

.

• Clearly γ(τ) = γ(−τ). Thus, it suffices to consider τ ≥ 0.

• In the following, it is always understood that τ ≥ 0.

• The sample autocorrelation function (SACF), to be defined below,
provides an indication of the extent to which it is possible to forecast a
series from its own past.
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Example: White Noise

• A (weakly) stationary time series {εt} is white noise if

µ = 0, and

γ(τ) =

{
σ2 for τ = 0
0 for τ 6= 0,

that is, it is an uncorrelated zero–mean process.

• For example, if {εt} is independent and identically distributed (iid), then
it is strict (or independent).

• White noise processes are important building blocks to construct more
complex time series.
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Weak and Strict Stationarity

• The terminology suggests that weak stationarity is a weaker property than
strict stationarity, or that strict stationarity implies weak stationarity.

• Due to the “< ∞” part of the weak stationarity condition, this may not
be the case, however.

• For example, if Yt is iid but follows a Cauchy distribution2 with pdf

f(y) =
1

π(1 + y2)
,

then even the mean does not exist.

• This process is strictly but not weakly stationary.

• A strictly stationary process with finite first and second moments is
weakly stationary.

2This is a Student’s t distribution with one degree of freedom.
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Weak and Strict Stationarity

• A process {Yt} is a Gaussian process if all the n–dimensional random
vectors in (4) have multivariate normal distributions.

• A Gaussian white noise process is called Gaussian white noise.
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The Partial Autocorrelation Function

• In addition to the ACF, the partial autocorrelation function turns out
to be useful for the identification of time series processes.

• The ACF at lag τ measures the unconditional correlation between
Yt and Yt−τ without taking the influence of the intervening variables
Yt−1, Yt−2, . . . , Yt−τ+1 into account.

• The partial autocorrelation between Yt and Yt−τ , denoted by π(τ),
reflects the net association between Yt and Yt−τ over and above that
part of the association that results from their mutual relationship with
Yt−1, . . . , Yt−τ−1.

• More precisely, the partial autocorrelation between Yt and Yt−τ is the
simple linear correlation between Yt and Yt−τ after removing the linear
effects of variables Y1, . . . , Yt−τ .
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The Partial Autocorrelation Function

• Suppose we attempt to linearly approximate Yt by Yt−1, . . . , Yt−τ−1,

Ŷt =
τ−1∑

i=1

αiYt−i, (8)

where the coefficients of the best linear approximation may be obtained
by minimizing the mean squared error3

E(Yt − Ŷt)2 = E





(
Yt −

τ−1∑

i=1

αiYt−i

)2


 . (9)

3Think of this as a population version of linear regression.
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The same can be done for Yt−τ ,

Ŷt−τ =
τ−1∑

i=1

αiYt−τ+i, (10)

and it turns out that the coefficients α1, . . . , ατ−1 in (8) and (10) are
the same due to stationarity.

• The partial autocorrelation at lag τ is then defined as

π(1) = ρ(1),

and, for τ ≥ 2

π(τ) = Corr{(Yt − Ŷt), (Yt−τ − Ŷt−τ)},

i.e., it is the correlation between Yt and Yt−τ after removing the linear
effects of Yt−1, . . . , Yt−τ+1.

• Several simple examples will be considered below.
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Moving Average (MA) Processes

• A moving average process of order q, or MA(q) process, is defined by

Yt = µ +
q∑

i=1

θiεt−i + εt, (11)

where {εt} is a white noise process.

• At time t, the process is a weighted average of εt, . . . , εt−q, which moves
through time; thus the name.

• Occasionally, it is convenient to define θ0 = 1, so that

Yt = µ +
q∑

i=0

θiεt−i. (12)

• We can calculate

E(Yt) = µ,
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and

γ(τ) = E




(
q∑

i=0

θiεt−1

)


q∑

j=0

θjεt−τ−j







=
n∑

i=0

n∑

j=0

θiθjE(εt−iεt−τ−j).

• Now

E(εt−iεt−τ−j) =

{
σ2 for t− i = t− τ − j ⇔ i = τ + j

0 i 6= τ + j,

and so

γ(τ) =

{
σ2

∑q−τ
j=0 θjθj+τ for τ ≤ q

0 for τ > q.

• The variance is

γ(0) = σ2

q∑

i=0

θ2
j ,
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and the ACF

ρ(τ) =





∑q−τ
j=0 θjθj+τ∑q

j=0 θ2
j

for τ ≤ q

0 for τ > q.
(13)

• We observe that the ACF of an MA(q) process cuts off after lag q.

• Finite–order MA(q) processes are weakly stationary.

• If {εt} is Gaussian white noise, the marginal distribution of {Yt} is
likewise normal and the process is also strictly stationary.
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Moving Average (∞) Processes

• We also define stationary infinite–order moving average, or, in short,
MA(∞), processes, i.e.,

Yt = µ + εt +
∞∑

i=1

θiεt−i, (14)

provided that
∞∑

i=1

|θi| < ∞,

i.e., the sequence of MA–coefficients, θi, i = 1, 2, . . ., is absolutely
summable.
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• In this case, we can compute the moments (proceeding in the same
manner as for finite–order MA(∞) processes) as

E(Yt) = µ, (15)

γ(0) = σ2
∞∑

i=0

θ2
i , (16)

γ(τ) = σ2
∞∑

i=0

θiθi+τ , (17)

ρ(τ) =
∑∞

i=0 θiθi+τ∑∞
i=0 θ2

i

. (18)

• If {εt} is strict (independent) white noise, then process (14) is said to be
a linear time series.

21



The Partial Autocorrelation Function of MA Processes

• Consider the MA(1) process,

Yt = θεt−1 + εt, (19)

with

γ(τ) =





(1 + θ2)σ2, τ = 0
θσ2 τ = 1
0, τ > 1,

and

ρ(τ) =
θ

1 + θ2
for τ = 1 (20)

and ρ(τ) = 0 for τ > 1.

• Now Yt depends on εt and εt−1, and Yt−2 depends on εt−2 and εt−3, so
there is no correlation at all between Yt and Yt−2: no “raw” correlation,
no partial correlation, no whatsoever correlation, right?
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• However, when it comes to partialling out Yt−1, we have

Yt Yt−2︷ ︸︸ ︷ ︷ ︸︸ ︷
. . . , εt, εt−1, εt−2, εt−3, . . .︸ ︷︷ ︸

Yt−1

, (21)

so that we may actually generate some dependence when involving Yt−1.

• The coefficient α of the best linear approximation is determined by

min
α

E(Yt − αYt−1)2 = (1 + α2)E(Y 2
t )− 2αE(YtYt−1)

⇒ α =
E(YtYt−1)

E(Y 2
t )

=
θ

1 + θ2
= ρ(1),

and by stationarity the same result is obtained for the approximation of
Yt−2.

• Then the second–order partial covariance between Yt and Yt−2 is

PCov(Yt, Yt−2) = E{(Yt−αYt−1)(Yt−2−αYt−1)} = −E2(YtYt−1)
E(Y 2

t )
= σ2 −θ2

1 + θ2
,

23



and thus, since

Var(Yt − αYt−1) = Var(Yt−2 − αYt−1) = σ21 + θ2 + θ4

1 + θ2
,

the second–order partial autocorrelation of the MA(1) process,

π(2) =
−θ2

1 + θ2 + θ4
.

In general, for the MA(1) process,

π(τ) =
(−1)τ+1θτ

1 + θ2 + θ4 + · · ·+ θ2τ
=

(−1)τ+1θτ(1− θ2)
1− θ2(τ+1)

.

• The general pattern for MA(q) processes is

– the autocorrelation function cuts off after lag q,
– the partial autocorrelation function tails off.
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Autoregressive Processes

• An autoregressive process of order p, abbreviated AR(p), is of the form

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt, (22)

where εt is white noise with mean zero and variance σ2.

As written in (22), the mean of the process is zero. If the mean µ is not
zero, we may write

Yt = µ + φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + · · ·+ φp(Yt−p − µ) + εt, (23)

or alternatively

Yt = c + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt, (24)

where
c = µ(1− φ1 − φ2 − · · · − φp). (25)
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Lag Operators

• The lag operator L is defined as

Lyt = yt−1. (26)

We have

(i) L2yt = L(Lyt) = Lyt−1 = yt−2, Lqyt = yt−q

(ii) For constant c, Lc = c, and L(cyt) = c(Lyt) = cyt−1.
(iii) L(yt + xt) = Lyt + Lxt = yt−1 + xt−1.
(iv) An example of a lag polynomial is

(1− λ1L)(1− λ2L)yt = {1− (λ1 + λ2)L + λ1λ2L
2}yt

= yt − (λ1 + λ2)yt−1 + λ1λ2yt−2.
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• Consider the first–order autoregressive (AR(1)) process, which upon
repeated substitution yields

yt = c + φyt−1 + εt (27)

= c(1 + φ) + φεt−1 + εt + φ2yt−2

...

= c
τ−1∑

i=0

φi +
τ−1∑

i=0

φiεt−i + φτyt−τ .

If |φ| < 1 and τ →∞, we obtain an MA(∞) process,4

yt =
c

1− φ
+

∞∑

i=0

φiεt−i. (29)

4Recall that

τ∑

i=0

φ
i
=

1− φτ+1

1− φ
, lim

τ→∞

τ∑

i=0

φ
i
=

∞∑

i=0

φ
i
= lim

τ→∞
1− φτ+1

1− φ
=

1

1− φ
if |φ| < 1. (28)
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On the other hand, using lag operator notation, (27) can be written

yt − φyt−1 = (1− φL)yt = c + εt. (30)

• Comparison of (29) and (30) suggests that, if |φ| < 1, we can invert and
expand the lag polynomial according to a geometric series,

(1− φL)−1 =
1

1− φL
=

∞∑

i=1

φiLi, (31)

so that

(1− φL)yt = c + εt

⇒ yt =
c

1− φL
+

εt

1− φL

=
c

1− φ
+

∞∑

i=0

φi(Liεt)

=
c

1− φ
+

∞∑

i=0

φiεt−i.
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• For our purposes, the operator L can formally be manipulated as if it
were a number with absolute value 1.

• The MA(∞) process has absolutely summable coefficients and is the
stationary solution of the AR(1) process with φ < 1. The moments of
this process follow from (15)–(18), namely,

E(Yt) =
c

1− φ
, (32)

γ(0) = σ2
∞∑

i=0

φ2i =
σ2

1− φ2
, (33)

γ(τ) = σ2
∞∑

i=0

φ2i+τ =
σ2φτ

1− φ2
, (34)

ρ(τ) = φτ . (35)

• Note that the ACF decays to zero geometrically with rate φ, which thus
can be viewed as a measure of the memory or persistence of the process.
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Observations close together in time are positively correlated with φ = 0.9.
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AR(p) processes

• For the AR(p) process,

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt,

we can write

(1− φ1L− φ2L
2 − · · · − φpL

p)Yt = εt,

or, defining the lag polynomial φ(L) = 1−∑p
i=1 φiL

i,

φ(L)Yt = εt. (36)
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• Let the roots of the characteristic polynomial

φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p (37)

be denoted by z1, . . . , zp, and the roots of the reverse characteristic
polynomial

zpφ(z−1) = zp − φ1z
p−1 − · · · − φp−1z − φp (38)

be denoted by λ1, . . . , λp, where λi = 1/zi, i = 1, . . . , p.

• Assume that

|zi| > 1, i = 1, . . . , p, i.e., φ(z) = 0 ⇒ |z| > 1, (39)

i.e., all the roots of φ(z) are outside the unit circle, and thus those of
the reverse polynomial are inside the unit circle.

• We can then invert the lag polynomial to get a stationary MA(∞)
process.
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• Factorizing the characteristic polynomial,

φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p (40)

= (−φp)
p∏

i=1

(z − zi). (41)

Since φ(0) = 1, we have

(−φp)(−1)p

p∏

i=1

zi = 1, (42)

and so

φ(z) = (−φp)
p∏

i=1

(z − zi) = (−φp)(−1)p

p∏

i=1

zi

p∏

i=1

(
1− z

zi

)

=
p∏

i=1

(1− λiz) . (43)
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• We can then write Yt as a stationary MA(∞) process,

Yt = φ(1)−1c + φ(L)−1εt (44)

=
c

1− φ1 − φ2 − · · · − φp
+

εt

(1− λ1L)(1− λ2L) · · · (1− λpL)

=
c

1− φ1 − φ2 − · · · − φp
+

∞∑

i=1

θiεt−i. (45)

• Condition

|zi| > 1, i = 1, . . . , p, i.e., φ(z) = 0 ⇒ |z| > 1, (46)

is also referred to as the stationarity condition for the AR(p) process.
If it is satisfied, a stationary solution exists and is given by the MA(∞)
representation.

• It is also the stability condition for the difference equation associated
with the deterministic part of the autoregressive equation.
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– For example, for the AR(2) with c = 0,

Yt =
εt

(1− λ1L)(1− λ2L)
=

1
λ1 − λ2

[
λ1

1− λ1L
− λ2

1− λ2L

]
εt

=
1

λ1 − λ2

∞∑

i=0

(λi+1
1 − λi+1

2 )Liεt

=
∞∑

i=0

(λi+1
1 − λi+1

2 )
λ1 − λ2︸ ︷︷ ︸

=θi

εt−i.

– For more concreteness, consider the process

Yt = 0.7Yt−1 − 0.1Yt−2 + εt, or (1− 0.7L + 0.1L2)Yt = εt. (47)

– The (reverse) characteristic equation of this process is

λ2 − 0.7λ + 0.1 = 0 ⇒ λ1/2 =
0.7±√0.49− 0.4

2
=

0.7± 0.3
2

, (48)
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or λ1 = 0.5 and λ2 = 0.2, and the inverse roots are z1 = 2 and z2 = 5.
As λ1 and λ2 are both smaller than one in magnitude (hence z1 and
z2 are larger than one in magnitude), the process is stationary. To find
the stationary MA(∞) representation, we factorize the lag polynomial
as

1− 0.7L + 0.1L2 = 0.1(L− z1)(L− z2) = 0.1z1z2

(
1− L

z1

)(
1− L

z2

)

= 0.1× 5× 2(1− λ1L)(1− λ2L) = (1− λ1L)(1− λ2L)

= (1− 0.5L)(1− 0.2L),

i.e.,

(1− 0.5L)(1− 0.2L)Yt = εt,

and inverting and expanding the lag polynomial gives the MA(∞)
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representation as

Yt =
εt

(1− 0.5L)(1− 0.2L)
=

1
0.5− 0.2

(
0.5

1− 0.5L
− 0.2

1− 0.2L

)
εt

=
1

0.3

∞∑

i=0

(
0.5i+1 − 0.2i+1

)
Liεt =

1
0.3

∞∑

i=0

(
0.5i+1 − 0.2i+1

)
εt−i

=
∞∑

i=0

θiεt−i, where θi =
0.5i+1 − 0.2i+1

0.3
, i = 0, 1, 2, . . .

– Note that Yt depends only on current and past values of the white
noise process {εt}, so that

Cov(Yt, εt+τ) = E(Ytεt+τ) = 0, τ > 0. (49)

• If the stability condition is satisfied and the process is allowed to be
initialized in the infinite past, or is assumed to be initialized with its
stationary distribution (moments), it is stationary.

• Otherwise, (46) guarantees that it converges rapidly to stationarity, and
is termed asymptotically stationary.
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• If the innovations εt are Gaussian white noise, the stationary distribution
is likewise Gaussian.

• The coefficients θi in the MA(∞) representation Yt = εt +
∑∞

i=0 θiεt−i

are also called the impulse response coefficients of the process, since
θi shows the impact of a shock (impulse) in period t− i on the system’s
output in period t.
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Calculating and characterizing the autocorrelations of a
stationary AR(p) process: Yule–Walker equations

• In principle, the moment structure of an AR(p) process could be
calculated from its MA(∞) representation, but this is very cumbersome.

• Alternatively, we can use the Yule–Walker equations.

• The process is

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt.

• Multiply by Yt−τ , τ ≥ 0 and take expectations,

E(YtYt−τ) = φ1E(Yt−1Yt−τ) + · · ·+ φpE(Yt−pYt−τ) + E(εtYt−τ).

• That is, for τ = 0,

γ(0) =
p∑

i=1

φiγ(i) + σ2, (50)
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and for τ > 0,

γ(τ) =
p∑

i=1

φiγ(τ − i), (51)

which carries over to the autocorrelations, i.e., for τ > 0,

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2) + · · ·+ φpρ(τ − p), (52)

and for τ ≥ p, the ACF follows a pth order linear difference equation.

• For constants c1, . . . , cp to be determined from the first p autocorrelations
ρ(0), ρ(1), . . . , ρ(p − 1), the solution of this difference equation can be
written as5

ρ(τ) = c1λ
τ
1 + · · ·+ cpλ

τ
p, τ = 0, 1, . . . , (53)

where λ1, . . . , λp are the roots of the reverse characteristic equation

zpφ(z−1) = zp − φ1z
p−1 − φ2z

p−2 − · · · − φp−1z − φp = 0, (54)
5Here we assume that the roots are all distinct. In case there are multiple roots, (53) has to be modified

slightly, but the central message remains unaffected.
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and, by the stationarity condition, |λi| < 1, i = 1, . . . , p, so

lim
τ→∞

ρ(τ) = 0. (55)

• Thus we observe that the ACF is described by a mixture of damped
exponentials (real roots) and damped sine waves (complex roots).

• In particular, the ACF of AR processes dies out gradually and, in contrast
to MA(q) processes, does not cut off after a specific lag.

• The speed of convergence in (55) is governed by max1≤i≤p{|λi|}, so the
largest root in magnitude of the (reverse) characteristic polynomial may
be taken as a measure for the memory of the process.
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• Example 1: Consider the AR(2) process

Yt = 1.4Yt−1 − 0.48Yt−2 + εt. (56)

• The roots of the polynomial z2 − φ1z − φ2 are given by 0.8 and 0.6, so
the solution is of the form

ρ(τ) = c10.8τ + c20.6τ , τ ≥ 0. (57)

• To find coefficients c1 and c2, we first note that ρ(0) = 1.

• Moreover, the Yule–Walker equation for τ = 1,

ρ(1) = φ1 ρ(0)︸︷︷︸
=1

+φ2ρ(1), (58)

gives

ρ(1) =
φ1

1− φ2
=

1.4
1 + .48

= 0.946. (59)
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• We then solve

c1 + c2 = 1(= ρ(0)) (60)

0.8c1 + 0.6c2 = 0.946(= ρ(1)), (61)

which gives c1 = 1.73 and c2 = −0.73; thus, the ACF of process (56) is

ρ(τ) = 1.73× 0.8τ − 0.73× 0.6τ . (62)
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• Example 2: Yt = Yt−1 − 0.89Yt−2 + εt

This is a process with complex roots z1/2 = 0.5± i0.8.

• The correlogram of this process has a distinctive cyclical pattern
associated with complex roots. This illustrates how AR processes can
generate time series with moderately regular cycles.
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Partial autocorrelations of AR processes

• For the AR(1) process Yt = φYt−1 + εt, the second–order partial
autocovariance is

E(Yt − φYt−1)(Yt−2 − φYt−1) = γ(2)− 2φγ(1) + φ2γ(0)

= γ(0)(φ2 − 2φ2 + φ2)

= 0.

• The general pattern for AR(q) processes is

– the autocorrelation function tails off,
– the partial autocorrelation function cuts off after lag p.

• Compare this with the MA(q) case.
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Autoregressive Moving Average (ARMA) Time Series
Models

• ARMA(p, q) is given by

φ(L)Yt = θ(L)εt, (63)

where the lag polynomials

φ(L) = 1− φ1L− φ2L
2 − · · · − φpL

p (64)

θ(L) = 1 + θ1L + θ2L
2 + · · ·+ θqL

q. (65)

• Assume that φ(z) and θ(z) have no roots in common.

• Mixing MA and AR parts often leads to more flexible models with less
parameters than using pure MA or AR models.

• As MA processes are stationary, the stationarity of an ARMA model
depends on the autoregressive polynomial φ(z), and the stationarity
condition is identical to (46).
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• If the stationarity condition holds, we can invert the lag polynomial φ(L)
to obtain an MA(∞) process,

Yt =
θ(L)
φ(L)

εt. (66)

• For example, consider the ARMA(1,1) process,

Yt = φYt−1 + θεt−1 + εt, (67)

which can be inverted

Yt =
1 + θL

1− φL
εt = (1 + θL)

∞∑

i=0

φiLiεt

= εt + (θ + φ)
∞∑

i=1

φi−1εt−i. (68)
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Autocorrelations of ARMA processes
• The autocorrelations could in principle be obtained from the MA(∞)

representation.

• An important device in time series analysis is to write higher–order
models in first–order vector form.

• This simplifies things greatly for the ARMA (p, q) model and is also
useful in other contexts, such as the derivation of forecasts.

• Write the ARMA(p, q) process as

Xt = AXt−1 + Ut, (69)

where6 Xt = (Yt, Yt−1, . . . , Yt−p+1, εt, εt−1, . . . , εt−q+1),

A =
(

A11 A12

A21 A22

)

(p+q)×(p+q)

, Ut =




εt

0(p−1)×1

εt

0(q−1)×1


 (70)

6For processes with nonzero mean µ, replace all the Yt by Yt − µ, Yt−1 by Yt−1 − µ and so on.
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A11 =




φ1 φ2 φ3 · · · φp−1 φp

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 0




p×p

, A12 =




θ1 θ2 · · · θq

0 0 · · · 0
... ... · · · ...
0 0 · · · 0




p×q

,

A21 = 0q×p, A22 =
(

01×(q−1) 0
Iq−1 0(q−1)×1

)

q×q

, (71)

where Iq−1 is the identity matrix of dimension q − 1.

• For a pure AR(p) process, Xt = (Yt, Yt−1, . . . , Yt−p+1)′, and A = A11.

• Note that, by block triangularity, the characteristic equation of matrix A
is

det(λIp+q −A) = det(λIp −A11) det(λIq −A22) = λq det(λIp −A11),
(72)

i.e., the nonzero eigenvalues of A are the eigenvalues of A11.

• It turns out that the eigenvalues of matrix A11 are identical to the roots
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of the reverse characteristic equation7

λp − φ1λ
p−1 − · · · − φp = 0, (74)

so the stationarity (stability) condition can equivalently be phrased in
terms of the eigenvalues of matrix A11 (which have to be smaller than
unity in magnitude).

• The powers of matrix A go to zero geometrically if and only if the
maximal eigenvalue of A is smaller than one in magnitude.

• Consider the AR(p) process

Xt = A11Xt−1 + Ut, (75)

where Ut = (εt, 0, . . . , 0)′. Iterating this, we can obtain the MA(∞)
7E.g., for p = 2,

A11 =

(
φ1 φ2

1 0

)
, det

(
λ− φ1 −φ2

−1 λ

)
= λ

2 − φ1λ− φ2. (73)
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representation

Xt = A2
11Xt−2 + A11Ut−1 + Ut = A3

11Xt−3 + A2
11Ut−2 + A11Ut−1 + Ut

= Aτ
11Xt−τ +

τ−1∑

i=0

Ai
11Ut−i

=
∞∑

i=0

Ai
11Ut−i,

and from the structure of Ut it follows that the coefficient of εt−i in the
MA(∞) representation of Yt (i.e., θi) is just the top left element of the
matrix Ai

11.

• A similar argument can be made for mixed ARMA(p, q) processes.
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• For an m × n matrix A and an p × q matrix B, this is defined as the
mp× nq matrix

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

... ... . . . ...
am1B am2B · · · amnB


 .

• Important rule in time series analysis:

vec(ABC) = (C ′ ⊗A)vec(B),

where the vec operator stacks the elements of an m × n matrix A
columnwise into an mn column vector, e.g.,

vec




1 4 7
2 5 8
3 2 1


 = (1, 2, 3, 4, 5, 2, 7, 8, 1)′. (76)
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• From (69),

XtX
′
t = AXt−1X

′
t−1A

′ + UtU
′
t + AXt−1U

′
t + UtX

′
t−1A

′. (77)

Note that E(Xt−1U
′
t) = 0, and so, by stationarity, (E(XtX

′
t) =

E(Xt−1X
′
t−1)),

E(XtX
′
t) = AE(XtXt)A′ + E(UtU

′
t), (78)

where the covariance matrix of Ut,

ΣU := E(UtU
′
t) = σ2




1
0(p−1)×1

1
0(q−1)×1







1
0(p−1)×1

1
0(q−1)×1




′

. (79)

Vectorizing, and solving,

vec(E(XtX
′
t)) = (I(p+q)×(p+q) −A⊗A)−1ΣU , (80)

and the top left element of E(XtX
′
t) is E(Y 2

t ).
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• E(XtX
′
t) also has the first p−1 cross products E(YtYt−1), . . . , E(YtYt−p+1).

• All autocorrelations can be calculated by the Yule–Walker equations, for
τ ≥ 1,

E(XtX
′
t−τ) = AE(Xt−1X

′
t−τ) + E(UtX

′
t−τ)︸ ︷︷ ︸

=0

,

so

E(XtX
′
t−1) = AE(XtX

′
t)

E(XtX
′
t−2) = AE(Xt−1X

′
t−2)︸ ︷︷ ︸

=E(XtX
′
t−1)

= A2E(XtX
′
t)

...

E(XtX
′
t−τ) = AτE(XtX

′
t),

and E(XtX
′
t) has been calculated above.

• For an ARMA(p, q) process, both the ACF and the PACF gradually
die out (i.e., do not cut off).
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Invertibility

• Consider the MA(1) process Yt = θεt−1 + εt, εt ∼ N(0, σ2), with lag–one
ACF

ρ(1) =
θ

1 + θ2
.

• Now consider the MA(1) process Yt = θ̃ε̃t−1 + ε̃t, ε̃t ∼ N(0, σ̃2).

• Assume

θ̃ = θ−1

σ̃2 = θ2σ2.

• Then for the Ỹt–process

ρ̃(1) =
θ̃

1 + θ̃2
=

θ−1

1 + θ−2
=

θ

1 + θ2
,

γ̃(0) = (1 + θ̃2)σ̃2 =
(

1 +
1
θ2

)
θ2σ2 = (1 + θ2)σ2,
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i.e., both processes have the same moments, so there is a lack of
identification.

• To avoid such problems, we focus on models with |θ| < 1, or, more
generally, on models where the MA polynomial θ(z) = 1+θ1z+· · ·+θqz

q

has all roots outside the unit circle.

• The MA polynomial can then be inverted (thus the term invertibility),
and the ARMA(p, q) process written as an AR(∞).

• E.g., for the MA(1),8

Yt

1 + θL
= Yt − θYt−1 + θ2Yt−2 − · · · = εt.

8For |θ| < 1, (1 + θL)−1 =
∑∞

i=0(−θ)iLi = 1− θL + θ2L2 − · · ·

57



−3 −2 −1 0 0.5 1 2 3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ACF of MA(1)

θ

ρ(
1)

 =
 θ

/(
1+

θ2 )

58


